
NASA-CR-193360

Iuly 1993 UILU-ENG-93-2229

CRHC-93-16

Center for Reliable and High-Performance Computing

APPLICATION OF
COMPILER-ASSISTED
MULTIPLE INSTRUCTION
ROLLBACK RECOVERY TO
SPECULATIVE EXECUTION

N.J. Alewine
W. K. Fuchs

W.-M. Hwu

(NASA-CR-193360) APPLICATION OF
COHPILER-ASSISTED MULTIPLE

INSTRUCTION ROLLBACK RECOVERY TO

SPECULATIVE EXECUTION (illinois
Univ.) 18 p

N93-32355

Uncl as

G3/62 0176461

Coordinated Science Laboratory

College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

UNCLASSIFIED
_CURItY CLASSIFICATION OF THIS PAGE

la. REPORT SECURITY CLASSIFICATION

Unclassified

2a. SECURffY CLASSIFICATION AUTHORITY

Zb. DECLASSIFICATION I OOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-93-2229 CRHC-93-16

'6a. NAME C)F PERFORMING ORGANIZATION

Coordinated Science Lab

University of Illinois

6c ADDRESS (O'ty, State, and ZIP Code)

ii01 W. Springfield Avenue

Urbana, IL 61801

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

7a

8c ADDRESS(City, State, and ZlPCode)

7b

REPORT DOCUMENTATION PAGE

lb. RESTRICTIVE MA/tKINGS

None
3. DISTRIBUTION/AVAILAB'IUTY OF REPORT

Approved for public release;

dis cribution unlimited

S. MONITORING ORGANIZATION REPORT NUMBER(S)

ii

OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If app.cabl,)
N/A National Aeronautics and Space Admlnlstratic

7b. ADDRESS (C/ty, State, and ZIP Code)

Moffitt Field, CA

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

10. SOURCE OF FUNDING NUMBERS

ELEMENT NO. . NO. ACCESSION NO.

Bb. OFFICE SYMB(_L
(If applicable)

11. TITLE (Include _curityOas_i_ation)

Application of Compiler-Asslsted Multiple Instruction Roilback Recovery to Speculative
Execution

S. PAGE COUNT

12. PERSONAL AUTHOR(S)

=

13a. TYPE OF REPORT

ALEWINE, N. J, W. K. Fuchs, and W.-M. Hwu

1135. TIME COVERED 114. DATE OF REPORT O'ear, Month, Day)

Technical I FROM . TO _,. I] qq_ .T,11 v 1 P

16. SUPPLEMENTARY NOTATION

18

ii

17. COSATI CODES I 18. SUBJECT TERMS (Continue on reverse if _ces_ty and identify by block numbed

FIELD I GROUP I SUB-GROUP I rollback recovery, compller-asslsted multiple instruction,• I I transient processor failures, instructional level paral-,, lel t _m

:9 ABSTRACT (Continue on reverse if necessary and identify by block number)

Speculative execution is a method to increase instruction level parallelism which can be exploited by both

super-scalar and VLIW architectures. The key to a successful general speculation strategy is a repair

mechanism to handle mispredicted branches and accurate reporting of exceptions for speculated instrucitons.

Multiple instruction rollback is a technique developed for recovery from transient processor failure. Many

of the difficulties encountered during recovery from branch misprediction or from instruction re-execution

due to exception in a speculative execution architecute are similar to those encountered during multiple
instruction rollback.

This paper investigates the applicability of a recently developed compiler-assisted multiple instruciton

rollback scheme to aid in speculative exectuion repair. Extensions to the ocmpiler-assisted scheme to support

branch and exception repair are presented along with performance measurements across ten application

programs.

20. DISTRIBUTION I AVAIL/kBIUTY OF ABSTRACT J21. ABSTRACT SECURITY CLASSIFICATION

I_'IUNCLASSIFIEDAJNUMITED [] SAME AS RPT. [] DTI¢ USERS'J Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL FZb.TELEPHONEOndu¢_ AreaCode)/22c. OFFICE SYMBOL
Illll

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITy,, CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

D_;CLAS S I FI ED

TO APPEAR: WORKSHOP ON HARDWARE AND SOFTWARE ARCHITECTURES FOR FAULT

TOLERANCE: PERSPECTIVES AND TOWARDS A SYNTHESIS JUNE 14-16, 1993

LE _R'I" S,_IFI"-'_CB_, FP,_CE

APPLICATION OF COMPILER-ASSISTED MULTIPLE

INSTRUCTION ROLLBACK RECOVERY TO

SPECULATIVE EXECUTION

N. J. Alewine, W. K. Fuchs, W.-M. Hwu

Center for Reliable and High-Performance Computing

Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

Abstract

Speculative execution is a method to increase in-
struction level parallelism which can be exploited by

both super-scalar and VLIW architectures. The key

to a successful general speculation strate_W is a repair

mechanism to handle mispredicted branches and ac-

curate reporting of exceptions for speculated instruc-
tions. Multiple instruction rollback is a technique

developed for recovery from transient processor fail-

ures. Many of the difficulties encountered during re-

cover/from branch misprediction or from instruction

re-execution due to exceptions in a speculative exe-
cution architecture are similar to those encountered

during multiple instruction roUback.

This paper investigates the applicability of a
centiy developed compiler-a_isted multiple instruc-

tion rollback scheme to aid in speculative execution

repair. Extensions to the compiler-assisted scheme

to support branch and exception repair are presented

along with performance measurements acro_ ten ap-

plication programs.

1 Introduction

Super-scalar and VLIW architectures have been

shown effective in exploiting instruction level paral-

lelism (ILP) present in a given application [1-3]. Cre-

ating additional ILP in applications has been the sub-

ject of study in recent years [4-6]. Code motion within

a basic block is insufficient to unlock the full potential
of super-scalar and VLIW processors with issue rates

"InternationAl Btud_e_ Machines Corporation, Boca P_n,
I;I.

I Thk research wu mpported in part by the National Aero-

na, utJcJ and Space Admini_rathm _NASA) under gran_ NASA

NAG 1-613, in cooperation with the minois Computer Labora-

tory for A_e Systen_ and Software (ICLASS), and in part

by the Department of the Navy and managed by the Omce ot

the Chief of Naval Research under Contract N00014-91-J-1283.

greater than two [3]. Given a trace of the most fre-

quently executed basic blocks, limited code movement
across block boundaries can create additional ILP at

the expense of requiring complex compensation code

to ensure program correctness [7]. Combining multiple

basic blocksinto muperblocks permits code movement
within the superblock without the compensation code

required in standard trace scheduling [3].

General upward and downward code movement

across trace entry points (joins) and general down-

ward code motion across trace exit points (branches,

or forks) is permitted without the need for special
hardware support [7]. Sophisticated hardware support

is required, however, for unrestricted upward code mo-

tion across a branch boundary. Such code motion

is referred to as speculative ezecution and has been
shown to substantially enhance performance over non-

speculated architectures [8-10]. This paper focuses on

the support hardware for speculative execution, which

ensures correct operation in the presence of except-

ing speculated instructions (referred to as exception

repair) and of mispredicted branches (referred to as
branch repair). It is shown that data hazards which re-

sult from exception and branch repair are very similar
to data hazards that result from multiple instruction

rollback, and that techniques used to resolve rollback

data hazards are applicable to exception and branch

repair.

The remainder of the paper is organized as follows.

Section 2 gives a brief overview of a compiler-assisted

multiple instruction rollback (MIR) scheme to be used

as a base for application to speculative execution re-

pair (SER). Section 3 describes speculative execution

and the requirements for exception repair and branch

repair. Section 4 introduces a schedule _consLr_c.
tion scheme and extends the compiler-assisted rollback

scheme. Section 5 describes read buffer flush costs and

Section 6 presents performance impacts which result

from read buffer flushes.

2 Compiler-Assisted Multiple Instruc-

tion Rollback Recovery

2.1 Hazard Classification

Within a general error model, data hazards result-
ing from instruction retry are of two types [11-13].
On-path hazards are those encountered when the in-
struction path after rollback is the same as the initial
path and branch hazards are those encountered when
the instruction path after rollback is different than the
initial path. As shown in Figure 1, rm represents an
on-path hazard where during the initial instruction se-

1
N

is live

1
i

• ii
• I

I
• |

|

Ii rye-'= rd+'_c i

Figure 2: Branch data hazard.

I'," ": +"bl ,

N •

I,:-,'= +x I

rollbsck

Figure h On-path data hazard.

quen¢_ rffiis written and after rollback is read prior to

being re-written. As shown in Figure 2, ry represents
a branch hazard where the initial instruction sequence

writes ry and al_er rollback ry is read prior to being re-
written however this time not along the original path.

2.2 On-path Hazard Resolution Using a
Read Buffer

Hardware support consisting of a read buffer of size
2N, as shown in Figure 3, has been shown to be ef-
fective in resolving on-path hazards [11-13]. The read
buffer maintains a window of register read history. If
an on-path hazard is present, then prior to writing
over the old value of the hazard register, a read of
that value must have taken place within the last N

instructions (else after rollback of <_ 2V, a read of the
hazard register would not occur before a redefinition).
Key to this scenario is the fact that the original path
is repeated. Branch hazard resolution is left to the

A

= I

li I,
'_-- Read Buffer

C

|

Figure 3: Read buffer.

compiler. At rollback, the read buffer is flushed back
to the general purpose register file (GPRF), restoring
the register file to a restartable state. The primary
advantage of the read buffer is that it does not require
an additional read port as with a history buffer, repli-
cation of the GPRF as with the future file, or bypass
logic as with the reorder buffer or delayed write buffer
[14,15].

2.3 Branch Hazard Removal Compiler
Transformations

Compiler transformations have been shown to be

effective in resolving branch hazards [11, 12]. Branch
hazard resolution occursat three levels; I) pseudo
code,2) machine code,and 3) post-pass.Reso|ution

at the pseudo code levelwould be accomplishedby

renamingthe pseudoregistereyofinstructionli(Fig-

ure 2) to rz. Node splitting, loop expansion and loop
protection transformations aid in breaking pseudo reg-

ister equivalence relationships so that renaming can

be performed. After the pseudo registers are mapped

to physics] registers, some branch hazards could re-
appear. This is prevented at the machine code level

by adding hazard constraintsto liverange constraints

prior to registerallocation.Branch hazards that re-

main afterthe firsttwo levelscan be resolvedby either

creating a %overing _ on-path hazard or by inserting

hop (no operation) instructionsahead of the hazard

instructionuntilthe rollbackisguaranteed to be un-

der the branch. Given the branch hazard of Figure

2, a covering on-path hazard is created by inserting

an MOV r_,rv instructionimmediately before the in-

structionin which rv isdefined.This guarantees that

the old value of % isloaded into the read bufferand

isavailableto restorethe registerfileduring rollback.

3 Speculative Execution

Figures 4 and 5 illustratethe two basic problems

which are encountered when attempting upward code

motion acro_ a branch. As shown in Figure 4, ifthe

"m
'oj jbranchmkm_v T
ie , *

" *Q_ I

Figure 4: rl in live_out of taken path.

speculated instruction (i.e., an instruction moved up-
ward past one or more branches) modifies the system

state, and due to the branch outcome the speculated

instruction should not have been executed, program

correctne_ could be affected. Figure 5 illustrates that

if the speculated instruction causes an exception, and

again due to the branch outcome, the excepting in-

struction should not have been executed, program per-

formance or even program correctness could be af-
fected.

tJr_ = _(r2)l-_--'trap occun

: O I [branch taken_v T
:,e • •

t J

Figure 5: Speculated instructiontraps.

3.1 Branch Repair

Figure6 shows an originalinstructionschedule and

a new schedule afterspeculation. Instructionsd, i,

and / have been speculated above branches c and

9 from their respectivefall-throughpaths.2 Specu-

lated instructionsare marked "(s)." The motivation

for such a schedule might be to hide the load delay

of the speculated instructionsor to allow more time

forthe operands ofthe branch instructionstobecome

available.Ifc commits to the taken path (i.e.,itis

mispredicted by the staticscheduler), some changes

to the system statethat have resultedfrom the execu-

tionofd, i,and f,may have tobe undone. No update

isrequired for the PC; execution simply begins at j.

Ifinstead,c commits to the fail-throughpath but 9

commits to the taken path, then only i'schanges to

the system statemay have to be undone.

Not allchanges to the system stateare equallyim-

portant. If for example, d writes to register r= and

r= _ live_in(j)(i.e.,along the path startingat j, a

redefinitionof r= willbe encountered priorto a use of

r, [16]),then the originalvalue of 7"=does not have

to be restored. Inconsistenciesto the system state

as a resultof mispredicted branches exhibitsimilari-

tiesto branch hazards in multipleinstructionrollback

[11,12]. Given this similaritybetween branch haz-
ards due to instructionrollba_.kand branch hazards

due to speculative execution, compiler-driven data-

flowmanipulations,similarto thosedeveloped toelim-

inate branch hazards forMIR [11,12],can be used to

resolvebranch hazards that resultfrom speculation.

Such compiler transformationshave been proposed for

2For thiB exmnple it is a_mmed that the fall-through patl_

are the mo,t likely outcome of the br_nch decisions at c aad 9-

a a

b (')cl

j (')i

d b

¢ (s)f

f
Lh _ k e

h Lh _ k
i h

RB_c: d

e

f

i

jump L1

RB_g: h

i

jump 1.2

Original Speculau_ Recovery
Schedule Schedule Blocks

Figure 6: Branch repair.

branch misprediction handling [9]. Since re-execution
of speculated instructions is not required for branch
mispredlction, compiler resolution of branch hazards
becomes a sufficient branch repair technique.

3.2 Exception Repair

Figure 6 also demonstrates the handling of spec-
ulated trapping instructions. If d is a trapping in-
struction and an exception occurred during its execu-
tion, handling of the exception must be delayed until ¢
commits so that changes to the system state are mini.
mized, and in some cases to ensure that repair is pos-
sible in the event that c is mispredlcted. If c commits
to the taken path, the exception is ignored and d is
handled like any other speculated instruction given a
branch mispredict. If c was correctly predicted, three
exception repair strategies are possible. The first is to
undo the effects of only those instructions speculated
above c (i.e., d, i, and f) and then branch to a recovo
ery block RB_c [10] as shown in Figure 6. The address
of the recovery block can be obtained by using the PC

value of the excepting instruction as an index into a
hash table. This strategy ensures precise interrupts

[14,17] relative to the nonspeculated schedule but not
relative to the original schedule. Recovery blocks can
cause significant code growth [10]. The second strat-
egy undoes the effects of all instructions su.b_uent to
d (i.e., i, b, and/), handles the exception, and resumes
execution at instruction i [9]. This latter strategy pro-
rides restartable states and does not require recovery
blocks. A third exception repair strategy undoes the
effects of only those subsequent instructions that are
speculated above c (i.e., only i and/), handles the ex-

ception, and resumes execution at instruction i, how-
ever, this time only executing speculated instructions
until c is reached. The improved efficiency of strategy
3 over that of strategy 2 comes at the coat of slightly
more complex exception repair hardware.

When a branch commits and is mispredicted, the

exception repair hardware must perform three func-
tions: 1) determine whether an exception has occurred
during the execution of a speculated instruction, 2) if
an exception has occurred, determine the PC value
of the excepting instruction, and 3) determine which
changes to the system state must be undone. Func-
tions 1 and 2 are similar to error detection and location

in multiple instruction rollback. Function 3 is similar
to on-path hazard resolution in multiple instruction

rollback [11,12, 18]. On-path hazards assume that af-
ter rollback the initial instruction sequence from the
faulty instruction to the instruction where the error
was detected is repeated.

Figure 7 illustrates the speculation of a group of

| /e

e

i nb=k

i "
_e'D'D_DeO e,De 0 Blipi el IDIDI! H_D g

I y
• branch •
• not •
• _ •

Figure 7: Exception repair.

instructions and re-execution strategy 3. The load in-
struction traps, but the exception is not handled un-
til the branch instruction commits to the fail-through
path. Control is then returned to the trapping instruc-
tion. This scenario is identical to multiple instruction
rollback where an error occurs during the load instruc-
tion and is detected during the branch instruction. For
this example, only el must be restored during rollback
since r4 and rs will be rewritten prior to use during

re-execution. Figure 7 shows that exception repair

hazards in speculative execution are the same as on-

path hazards in multiple instruction rollback, and a
read buffer as described in Section 2 can be used to

resolve these hazards. The depth of the read buffer is

the maximum distancefrom I, to In along any back-

wards walk3, where In isa trapping instructionthat

was speculated above branch instructionI_.

3.3 Schedule Reconstruction

Assumed in Figures 6 and 7 are mechanisms to

identifyspeculative instructions,determine the PC

value of excepting speculated instructions,and deter-

mine how many branches a given instructionhas been

speculated above. An example of the lattercase is

shown in Figure 0 where instructions d, i, and f, axe
undone if c is mispredicted; however, only i must be

undone if g is mispredicted.

If the hardware had access to the original code

schedule, the design of these mechanisms would be

straightforward. Unfortunately, static scheduling re-
orders instructions at compile-time and information as

to the original code schedule is lost. To enable recov-

ery from mispredicted branches and proper handling

of speculated exceptions, some information relative to

the originalinstructionorder must be present in the

compiler-emittedinstructions.This willbe referredto
as schedule recon._raction.

By limitingthe flexibilityof the scheduler,lessin-

formation about the originalschedule isrequired.For

example, ifspeculation is limited to one levelonly

(i.e.,above a singlebranch), a singlebitin the opcode
fieldissufficientto indicatethat the instructionhas

been moved above the next branch [8].The hardware

would then know exactly which instructioneffectsto

und6 (i.e.,the ones with thisbit set). Also, remov-

ing branch hazards directlywith the compiler permits

general speculation with no schedule reconstruction

for branch repair [9].

4 Implicit Index Schedule Reconstruc-

tion

Implicit indez scheduling supports general specula-

tion of regular and trapping instructions. The scheme
was inspired by the handling of stores in the sentinel

scheduling scheme [9] and was designed to exploit the

unique properties of the read buffer hardware design
described in Section 2. Schedule reconstruction is ac-

complished by marking each instruction specalated or

3 A ,#alk is a sequence of edge tr&verMia in a graph where the

edges visited can be repeated [19].

nonspec,lated by including a bit in the opcode field,

and using this encoding to maintain an operand his-
tory of speculated instructions in a FIFO queue called

a speculation read buffer (SRB). The SRB operates
similar to a read buffer with additional provisions for

exception handling.

4.1 Exception Repair Using a Speculation
Read Buffer

Figure 8 shows an originalcode schedule and two

speculativeschedules,along with the contents of the

SRB at the time branches Icand _rw commit. Instruc-

tions [d and I I have been speculated above branch
instruction Ic, and Ii has been speculated above both

I s and I¢. The encoding of speculated instructions in-
forum the hardware that the source operands are to

be saved in the SRB, along with the source operand

values, corresponding register addresses, and the PC

of the speculated instruction.

Speculated instructions execute normally unless

they trap. If a speculated instruction traps, the ex-

ception bit in the SRB which corresponds to the trap-
ping instruction is set and program execution contin-

ues. Subsequent instructions that use the result of the

trapping instruction are allowed to execute normally.

A chk.ezcept(k) instruction is placed in the home

block of each speculated instruction. Only one

chLezcept(k) instruction is required for a home block.
As the name implies, chLezcept(k) checks for pend-

ing exceptions. The command can simultaneously in-
terrogate each location in the SRB by utilizing the

bit field k. As shown in schedule 1 of Figure 8,

chk.ezcept(OOIlll) in I_ checks exceptions for instruc-
tions Id and I_. If a checked exception bit isset,the

SRB isflushedinreverseorder,restoringthe appropri-

ate registerand PC values.Execution can then begin

with the excepting instruction.

Figure 8 illustratesseveralon-path hazards which

are resolvedby the SRB. In schedule 1,if1_traps and

the branch [c commits to the taken path, _r_has cor-

rupted r2 and [! has corrupted rv. Flushing the SRB

up through [i restoresboth registersto theirvalues

priorto the initialexecution of li. Note that register

re isalsocorrupted but not restoredby the SRB, since

afterrollback,s willbe rewrittenwith a correctvalue

beforethe corrupted value isused.

As an alternativeto checking forexceptionsineach

home block,the exception could be handled when the

exception bit reaches the bottom of the SRB. This is

similarto the reorderbufferused indynamic schedul-

ing [14] and eliminates the cost of the chk_ezcept(k)

command, however, increases the exception handling

Oril_inal Schedule

I_ r_ = r2 * r_

x_ r3 = r, + rJ

L: t_ _l° _" ZS

I¢_ r6 = rT * r8

I.: rs = r& + 4

If: rT= rT + 4

It: bne rt, r7, Ik

zh: r6= r6 + "t

Ii: r2 = MEM(r2)

1
c 2N

d

l

PC
Reg. No.

Zr - 0

If value(r 7) 7

xd _,_ s

Id _l_[r 7) 7

Ii - 0

It value(r2) 2

SRB Contents

Speculated Schedule 1 S/_ulated Sch_ule 2

la: rl = r2 * r_ la: rl .. r2 * r_

I¢: bile r/, rj, Ij I¢: b;l_ r1, r3, lj

I_: chk_except(001111)- I_: chk..exeept(llO011)

le: re= r&+ 4 I.: rs= ra+ 4

It: btm rs. r7, It It" bner&, r7. It

I_ chk_except(110000) I;: chk=_except(O01100) --,]

Is: r6-:6 + 4 I_ r6 1"6+4

:

PC Except bit --I

: It _,)71 IJ -I,: . oI I1,.._

SRBConmnm

Figure8: Exceptionrepairusinga speculationreadbuffer(SRB).

latency which can impact performance depending on

the frequency of exceptions.

Impficit index scheduling derives its name from the

ability of the compiler to locate a particular restorer

value within the SRB. This is pouible only if the dy-

namically occurring history of speculated instructions
is deterministic at branch boundaries. Superbloclm

guarantee this by ensuring that the sole entry into the

superblock is at the header and by limiting specula-

tion to within the superblock. For standard blocks,
bookkeeping code [7] can be used to ensure this deter-
ministic behavior.

4.2 Branch Repair Using a Speculation
Read Buffer

As describedinSection2,branch repaircan be han-

dled by resolvingbranch hazards with the compiler.

Branch hazard resolutionin multiple instructionroll-

back can be a_isted by the read bufferwhen cover-

ing on-path hazards are present,reducing the perfor-

mance cost of variablerenaming [11,12].In a similar

fashion,the SRB can assistin branch repair.Figure

9 shows the originalcode schedule and the two spec-

ulativeschedulesof Figure 8. For thisexample, itis
+

assumed that r_, _, re, and rv are elements in both

live_in(Ij) and lit_e_in(I_).

As shown in schedule I, ifbranch instructionI,

commits to the taken path, r2,rs,and rv,which were

modified in I+,Ij, and I/, respectively,must be re-

stored.Ifinstead,Iccommits to the fall-throughpath

and Igcommits to the taken path, only r2 must be re-

stored. Registersr2 and rv are rollbackhazards that

resultfrom exception repair;therefore,the SRB con-

talnstheirunmodified values.By includinga fl_h(_)

command at the targetof Ic and Ig, the SRB can be

used to restorer2 and/or rv given a mispredictionof

I, orig.

The flush(k) command selectively flushes the ap-

propriate register values given a branch misprediction.

For example, in schedule 2 of Figure 9, ifI¢ is predicted

correctly and Ig is mispredicted, the SRB is flushed in
reverse order up through Ii, restoring value(r2) from

Ii but not restoringvalue(rv) from I I. Since specu-
lation is always from the most probable branch path,

the flush(k)command is always placed on the most

improbable branch path, minimizing the performance

penalty. Not allbranch hazards are resolved by the

presence of on-path hazards. These remaining haz-

ards can be resolvedwith compiler transformations.

5 SRB Flush Penalty

The examples of Section 4 demonstrate that

compiler-assisted multiple instruction rollback can be

applied to both branch repair and exception repair in a

speculative execution architecture. The flush penalty
of the read buffer is not a key conceen in multiple in-

struction rollback applications since instruction faults

are typically very rare. In application to exception re-

pair in speculative execution, the SRB flush penalty is

not a major concern due to the infrequency of ex-

ceptions involving speculated instructions. However,
in application to branch repair, the SRB flush penalty

could produce significant performance impacts. Stud-
ies of branch behavior show a conditional branch fre-

quency of 11% to 17% [20].Staticbranch prediction

methods resultin branch mispredictiousin the range

of 5% to 15%. This resultsin a branch repair fre-

quency as high as 2.5%. Assuming a CPI (clockcycles

per instruction)rate ofone and an average SRB flush

penaltyoften cycles,the performance overhead ofthe

flushmechanism would reach 22.5%. This indicates

the importance of minimizing the amount of redun-

dant data stored inthe SRB so that the flushpenalty

isreduced.

Recently, a technique was proposed to reduce the

amount ofredundant data in a read bufferso that the

read buffersizecould be reduced [12,13]. A similar

technique can be used to assure that only the data

required for branch and exception repairisstored in

the SRB. In the implicitindex scheme of Section4, a

bit indicatingwhether an instructionisspeculated is

added to the opcode field.By expanded thisfieldto

two bits,operand storage requirements can be spec-

ified.Figure 10 shows the reduced contents of the

SRB given schedule I of Figure 9. In the modified

scheme, only the firstread of rr must be maintained.

Register rs is not required since it was not modified.

The improved scheme also eliminates blank spaces in
the SRB. For this example, the misprediction of Ic in

schedule 1 of Figure 9 results in four lessvariablesto

flush.

The coding of the two speculationbitswould be as

follows:00) no save required,01) save operand I,10)

save operand 2,and 11) save both operands. Ifneither

operand of a speculated instruction has be saved in
the SRB, the instruction is not masked as speculated.

This is not a problem for branch repair: however, if

such an instruction traps, the hardware would have no

way of knowing not to handle the exception immedi-

ately. There would also be no entry in the SRB for the

exception bit or for the corresponding PC value. One

solution to the problem would be to add another bit to

.Ori."l_al Schedule Speculated Schedule 1

I_ rl = r2* r3

I_ rj- v4 + rJ

I_ v6 = rT , v8

I,: vs = va + 4

If _7= rT+ _

I_: b= _a. "7. Ik

I_ r6= r6+ 4

I_: r2 = M]_(r 2)

T lIf' " oIdl va/u_r_) 8

c 2N Id_wNne(r:fl 7

o lI, - o

d Ii va/ue(r_ 2

l
I

I_ I"1"i"2" r3

I.+r+/_. r8

Ib;r_+ r5

I=: bne vl. v3. Ij

I,: v8 = va + 4

I_ br_ v&. v7, Ik

I/_ r6" r6+ 4

e
e

Ii n_o_)--

f

l c
11 0

$ r

h d

1

Speculated Schedule 2

SRB Contents

I,: r_" rs + 4

Ii b_ r_. _7,I_

I_: r_ f r_ + 4

Ij: flush(Ill010) --

I_: nush(OOlO00)---,
I

• I
I

l If 0

fv, 7)7

Ii 0

2N li _l_e(,_) 2

Id value(r_) 8

Id _l_(rT) 7

SRB Contcnm

Figure9: Branch repair using a speculationread buffer(SRB).

u o

L

PC Except bit

Reg. No. -

Id v_r7) 7

x, 2

M Contents

Figure I0: SRB with reduced content.

Inmz men ion Ori nl odc
code imtru_om

0 E-7

Figure II: Instrumentation code placement.

the opcode field which marks speculated trapping in-

structions. A better solution is to code all speculated

trapping instructions which have no operands to save

as 01. This will indicate that exception handling is to

be delayed and cause a reservation of an entry in the

SRB, and also will slightly increase the flush penalty
during branch repairs.

6 Performance Evaluation

6.1 Evaluation Methodology

In this section, results of a read buffer flush penalty

evaluation are presented. The instrumentation code

segments of Figure 11 call a branch error procedure
which performs the following functions:

1. Update the read buffer model.

. Force actual branch errors during program exe-

cution, allowing execution to proceed along an

incorrect path for a controlled number of instruc-
tions.

. Terminate execution along the incorrect path sad

restore the required system state from the simu-
lated read buffer.

4. Measure the resulting flush cycles during the

branch repair.

5. Begin execution along the correct path until the
next branch is encountered.

An example instrumentation code segment is shown

in Figure 12. Parameters, such as operand saving in-
formation, current PC, branch fall-though PC, and
branch target PC values, are passed by the instru-

mentation code to the branch error procedure. An

additional miscellaneous parameter contains instruc-

tion type and information used for debugging.

Figure 13 gives a high level flow of operation for the

branch error procedure. When a branch instruction

in the original application program is encountered, an

arm{.branch flag is set. Prior to the execution of the
next application instruction, the arnt.branch flag is

checked, and if set, the branch decision made by the

application program is set aside. The branch is then

predicted by the branch prediction model. Four mod-
eL are tuted in the evaluation: 1) predict taken, 2) pre-

dict not taken, 3) dynamic prediction, and 4) static

prediction from profiling information. The dynamic

prediction model is derived from a two bit counter

branch target buffer (BTB) design [21] and is the

only model that requires updating with each predic-
tion outcome.

After the branch is predicted, the prediction is

checked against the actual branch path taken by the

application program. If the prediction was correct, ex-
ecution proceeds normally. If the prediction was incor-

rect, the correct branch path is loaded into the recov-

ery queue along with a branch error detection (BED)

latency, and the predicted path is loaded into the PC.
The BED latency indicates how long the execution of

instructions is to continue along the incorrect path.

The branch error time_ouL flag is set when the BED

latency is reached. When a branch error is detected,

the register file state is repaired using the read buffer
contents. The PC value of the correct branch path is

obtained from the recovery queue. During branch er-

ror rollback recovery, the number of cycles required to

flush the read buffer during branch repair is recorded.

$ simlb 2 24 0"
T instruCtiOn 24

Begin brsim sim hook: sl - 16, s2 - 0: normal
_spi 44subu

la

sw

la

sw
la

sw
li

sw
li

sw

move

Sat,

Sat,

Sat,
Sat,

Sat,
Sat,
Sat,
Sat,

Sat,

Sat,

Sat,

#

$ simlb 2 25 l--

bne $16,

$_main 6 :

$ simlb 2 24 0 _ hookaddr_
2_($sp)
$ simlb 2 24 1 _ _s_c_oQadge_ss
2_($sp}
$ s imlb 2 25 0-4----next hook

28 ($sp)

8216 _ n_sc_Uaneous

32 ($sp)
16 _ dh_cts read buff= to save

40 ($sp) regis= 16
Ssp

j brsim save
End brsim simho_k.

$_simlb 2 24 I_

$ simlb 2 25 0:

instruct i_n 25

Begin brsim sim hook: sl - 16, s2 - 9: branch

subu _sp, 44

la Sat, $ simlb 2 25 0_@----hookadd_ss

sw Sat, 2_($sp)
la Sat, $ simlb 2 25 1-4----L_n_fionadre_

sw Sat, 2_($sp)

la Sat, $ main 6

sw Sat, 2_($spY

li Sat, 532505

sw Sat, 32($sp)
la Sat, $ main 5 _

sw Sat, 3_($sp_

li Sat, 304

sw Sat, 40($sp)

move Sat, $sp
j brsim save

End brsim sim ho_k.

ne_thookaddxess

m_7,elIaneous

mrget

d_-ectsreadbuff=tosave
s 16 and 9

$9, $_main_5 I_@--- o_ms_cfion

Figure 12: Instrumentation code sequences.

Y

N

Y

N Y

N

branch

Y

atm__h <- 1

update
RB model

I ream i

load recovery queue
withnotpredicu_lpath

)

m recovery queue

PC - program counter

GPRF - general purpose register file

RB - read buffer

BPM - branch prediction model

N

' r

. restore GPRF f_om]

RB model, record
flush cycles

• load PC fxom
recovery queue

Figure 13: Branch error procedure operation.

Table1: Application programs.

I Program IIStatic D cnption
QUEEN

WC

QSORT
CMP
GREP
PUZZLE
COMPRESS
LEX
YACC

CCCP

148 eight-queen program
181 UNIX utility
252 quick sort algorithm
262 UNIX utility

907
932
1826
6856
8099
8775

UNIX utility

simple game
UNIX utility

lexical analyzer

parser-_enerator
preprocemor for
gnu C compiler

It is smumed for this evaluation that two read

buffer entries can be flushed in a single cycle. This cor-
responds to a split-cycle-save assumption of the gen-
eral purpoze register file [12]. Performance overhead
due to read buffer flushes (% increaze) is computed sa

fluah.cpcle8
Flush..OH = 100. '

total._'ycles

All instructions are amurned to require one cycle for
execution. This amumption is conservative since the

MIPS processor used for the evaluation requires two
cycles for a load. The additional cycles would increase
the total_cyclea and thereby reduce the observed per-
formance overhead. In addition to accurately measur-

ing flush costs, the evaluation verifies the operation of
the read buffer and its ability to restore the appropri-

ate system state over a wide range of applications.
The instrumentation insertion transformation oper-

ates on the s-code emitted by the MIPS code generator
of the IMPACT C compiler [3]. The transformation
determines which operanck require saving in the read
buffer and inserts calls to the initialization, branch er-

ror, and summary procedures. The resulting s-code
modules are then compiled and run on a DECstation
3100. For the evaluation, BED latencies from 1 to 10
were used. Table 1 lists the ten application programs
evaluated. Static Size is the number of amembly in-

structions emitted by the code generator, not includ-
ing the library routines and other fixed overhead.

6.2 Evaluation Results

Experimental measurements of read buffer flush
overhead (Fl_h OH) for various BED latencies are
shown in Figures 14 through 23. The four branch

Hush OH
(%)

P N T_en:-o-

0- o if,,! °. °., **.M...°.

10" _

BED Latency

Figure 14: Flush penalty: QUEEN.

Flush OH
(%)

50-

40-

30-

20.

10.

0

n: ...o-

n:-_-

Lt

2 3 4 _ 6 7 8 9 I'0
BED I._Uency

Figure 15: Flush penalty: WC.

prediction strategies used for the evaluation are:
1) predict taken (P_Taken), 2) predict not taken
(P.N_Taken), 3) dynamic predictionbased on a
branch target buffer (Dpn_Pred), and 4) static branch
prediction using profiling data (Prof_Pred).

Flush costs were closely related to branch predic-
tion accuracies, i.e., the more often a branch was mis-
predicted, the more often flush costs were incurred.
In a speculative execution architecture, branch predic-
tion inaccuracies result in performance impacts in ad-
dition to the impacts from the branch repair scheme.
Branch misprediction increases the base run time of
an application by permitting speculative execution of
unproductive instructions. Increased levels of specula-
tion increase the performance impacts associated with
branch prediction inaccuracies. Only the performance
impacts associated read buffer flushes are shown in
Figures 14 through 23.

FlushOH
(%)

5O"

4O-

30-

2O-

10

P Taken:
P_-N_Takcn:-a-
Dyn_Pmd: .._..
Prof_Pred: --4-

BED Late,no7

Figure 16: Flush penalty: COMPRESS.

Hush OH
(%)

50.HP T_nt: .-_
- P N T aken:-o-

D .-Pre
Pmf Pre_ --_

.

3O-

2O-

10-

1 2 3 4 5 6 7 8 910
BED Latency

Figure 17: Flush penalty: CMP.

Hush OH
(%)

_ P_Taken: -Q-

£

I_Y ..a-

0 ,

BED Latency

Figure 18: Flush penalty: PUZZLE.

Flush OH
(%)

50- p Taken: --_
- P-N Taken>o-

40-
Prof. Pred: --4--

3O-

- _ m GI

20-
oos _'w

O' _ :_ _. :_ _ "_ _ _ 1'0

BED Latency

Figure 19: Flush penalty: QSORT.

For nine of the ten applications, P_N.Taken was
significantly more accurate or marginally more ac-
curate in predicting branch outcomes than P_Taken.
For QSORT, P.Taken was significantly more accurate
than P.N_Taken. This result demonstrates that in

s speculative execution architecture, it is difficult to
guarantee optimal performance across a range of ap-
plications given a choice between predict-taken and
predict-not-taken branch prediction strategies.

For all but one application, Pref_Pred was more ac-
curate than either P.Taken or P_N.Taken. For CMP,

Prof_Pred, P.N_Taken, and Dyn_Pred were nearly per-
fect in their prediction of branch outcomes. Pre/_Pred
marginally outperformed D_ln_Pred in all applications
except LEX.

The purpose of measuring read buffer flush costs
given the recovery from injected branch errors is to
establish the viability of using a read buffer design

forbranchrepairforspeculativeexecution.Although

insuch a speculativescheduleonly staticprediction

strategies would be applicable, the Dyn.Pred model
was included to better assess how varying branch pre-
diction strategies impact flush costs. Overall, the ac-
curacy of Dyn_Pred fell between P_Taken/P_N_Taken

and Pro f_Pred.

Over the ten applications studied, read buffer flush
overhead ranged from 49.91% for the P_Taken strat-
egy in CCCP to .01% for the P_N_Taken strategy for
CMP given s BED of ten. It can be seen from Figures
14 through 23 that s good branch prediction strat-

egy is key to a low read buffer flush cost. The results
show that given a static branch prediction strategy
using profiling data, an average BED of ten produces
flush costs no greater than 14.8% and an average flush
coet of 8.1% acrc_mthe ten applications studied. This
performance overhead is comparable to the overhead

Hush OH

_ PTalmn: --_
P N Talmn:-a-

=-

. °O°°U

lo- ou--a °'°°
j I..Q..Q..Q.._r ° x.....x...,x .-o..x

- =.....-..- _''_f"_
I ! I

BI_)Lamncy

Figure 20: Flush penalty: GREP.

Flush OH
(%)

50-

40-

3O-

2O-

0

E -.-@-
Taken:-o-

-Pmd: ---.
Pmf_Pmd: .-4-

BED Latency

Figure21:Flushpenalty:LEX.

expectedfrom a delayedwritebuffer scheme with a

maximum allowable BED of ten [15]. Given a max-
imum BED of ten and an average BED of less than
ten, the flush costs of the read buffer would be lees
than that of a delayed write buffer, since a delayed
write buffer is designed for a worst-case BED and the
flush penalty of a read buffer is based on the average
BED. The observed flush costs are small in compari-

son to the substantial performance gain of speculated
architectures over that of nonspeculated architectures

[8--10].

The BED fora givenbranchinthisevaluationcor-
respondsto the number of instructionsmoved above

a branchina speculativeschedule.The resultsofthe

evaluationindicatethatifthe averagenumber ofin-

structiousspeculatedabove a givenbranch is< 10,
then the read bufferbecomes a viableapproach to

handlingbranchrepair.

Hush OH
(%)

50-

2o:

0

P Taken:
P-N Taken:-o-

Prof_Pred: --4--

BED Latency

Figure22:Flushpenalty:YACC.

FlushOH
(%)

30-I V P-..N. Takcn_-o-
- Dyn_Pred: .-_'.--

20" Prof_Pred:--4-.

10-

0

BED Latency

Figure23:Flushpenalty:CCCP.

7 Summary

Speculativeexecutionhas been shown tobe an ef-
fectivemethod to create additionalinstructionlevel

parallelismin generalapplications.Speculatingin-

structiousabove branchesrequiresschemes to han-

dlemispredictedbranchesand speculatedinstructions

thattrap.

This paper showed thatbranch hazardsresulting

from branchmispredictiousin speculativeexecution
aresimilarto branchhazardsin multipleinstruction

rollbackdevelopedforprocessorerrorrecovery.Itwas

shown thatcompilertechniquespreviouslydeveloped

for error recovery can be used as an effective branch
repair scheme in a speculative execution architecture.
It wae also shown that data hazards that result in

rollback due to exception repair are similar to on-path

hazards suggesting a read buffer approach to exception

repair.
Implicit index schedulin 8 was introduced to exploit

the unique characteristics of rollback recovery using

a read buffer approach. The read buffer design was
extended to include PC values to aid in rollback from

excepting speculated instructions.
Read buffer flush penalties were measured by in-

jecting branch errors into ten target applications and

measuring the flush cycles required to recover from

the branch en_rs using a simulated read buffer. It
was shown that with a static branch prediction strat-

egy using profiling data, flush costs under 15% are
achievable. The results of these evaluations indicate

that compiler-assisted multiple instruction rollback is
viable for branch and exception repair in a speculative
execution architecture.

8 Acknowledgements

The authors wish to thank Shyh-Kwei Chen and

C.-C. Jim Li for their help with the compiler aspects

of this paper. We would like to thank Scott Mahlke,

William Chen, and John Christopher Gyllenhaal for
their excellent technical suggestions and amistance

with the IMPACT C compiler. Finally, we express
our thanks to Janak Patel for his contributions to this

research.

References

[1]

[2]

[3]

[4]

R. P. Colwell, R. P. Nix, J. O'Donnell, D. B. Ps-

pworth, sad P. K. Rodman, "A VLIW Architec-
ture for a Trace Scheduling Compiler," in Pro¢.

_nd Int. Conf. Architecture Support Programming

Langeages and Operating Syst., pp. 105-111, Oct.
1987.

J. C. Dehnert, P. Y. Hsu, and J. P. Bratt, "Over-

lapped Loop Support in the Cydra 5," in Proc.

3rd Int. Conf. Architecture Support Programming

Languages and Operating Syst., pp. 26-38, April
1989.

P. Chang, W. Chen, N. Warter, and W.-
M. W. Hwu, "IMPACT: An Architecture Frame-

work for Multiple-Instruction-Issue Processors,"

in Proc. lSth Anna. Syrup. Comput. Architecture,

pp. 286--275, May 1991.

B. It. Itau and C. D. Glaeser, "Some Scheduling

Techniques and an Easily Schedulable Horizon-

tal Architecture for High Performance Scientific

Computing," in Proc. HOth Anna. Workshop Mi-
croprogramming Microarchitectare, pp. 183-198,
Oct. 1981.

[5] M. S. Laln, "Software Pipelinin8: An Effective

Scheduling Technique for VLIW Machines," in
Pro¢. ACM SIGPLAN 1988 Conf. Programming

Language Design Implementation, pp. 318-328,
June 1988.

[6] A. Aiken and A. Nicolau, "Optimal Loop Paral-
leUzation," in Pro¢. ACM SIGPLAN 1988 Conf.

Programming Language Design Implementation,

pp. 308-317, June 1988.

[7] J. A. Fisher, '_rrace Scheduling: A Technique
for Global Microcode Compaction," IEEE Trans.

Comput., vol. c-30, no. 7, pp. 478-490, July 1981.

[8] M. D. Smith, M. S. Lain, and M. Horowitz,
"Boceting Beyond Scalar Scheduling in a Super-
scalar Processor," in Proc. 17th Anna. Syrup.

Compnt. Architecture, pp. 344-354, May 1990.

[9] S. A. Mahlke, W. Y. Chen, W.-M. W. Hwu, B. K.
ltao, and M. S. Schlansker, "Sentinel Scheduling

for VLIW and Superscalar Processors," in Proc.
5tit Int. Conf. Architecture Support Programming

Languages and Operating Sysf., pp. 238-247, Oct.
1992.

[10] M. D. Smith, M. A. Horowitz, and M. S. Lain,
"Efficient Superscalar Performance Through

Boosting," in Proc. 5th Int. Conf. Architecture
Support Programming Languages and Operating

Sy_., pp. 248-259, Oct. 1992.

[11] N. J. A]ewine, S.-K. Chen, C.-C. J. Li, W. K.
Fuchs, sad W.-M. W. Hwu, "Branch Recov-

ery with Compiler-Assisted Multiple Instruction

Retry," in Pro¢. _th. Int. Syrup. Fault-Tolerant

Comput., pp. 66-73, July 1992.

[12] N. J. Alewine, Compiler-assisted Multiple In-
struction Rollback Recovery asing a Read Buffer.

PhD thesis, Tech. Rep. CRHC-93-06, University

of Illinois at Urbana-Champaign, 1993.

[13] N. J. Alewine, S.-K. Chen, W. K. Fuchs, and W.-

M. W. Hwn, "Compiler-assisted Multiple Instruc-
tion Rollback Recovery using a Read Buffer,"

Tech. Rap. CRHC-93-11, Coordinated Science
Laboratory, University of Illinois, May 1993.

[14] J. E. Smith and A. K. Pleszkun, "Implementing
Precise Interrupts in Pipelined Processors," IEEE

Trans. Comput., vol. 37, pp. 562-573, May 1988.

[15]Y. TamirandM. Tremblsy,"High-Performance
Fault-TolerantVLSISystemsUsingMicroRoll-
bsck," IEEE Tr=_. Comp,t., vol. 39, pp. 548-

554, Apr. 1990.

[16] A. V. Aho, 11. Sethi, and J. D. Ullman, Compil-

ers: Principles, Techniqwes, and Tools. Reading,

MA: Addison-Wesley, 1086.

[17] M. Johnson, Superscalar Microprocessor Design.

Enghwood Clh_, NJ: Prentice-Hall, Inc., 1991.

[18] C.-C. J. Li, S.-K. Chen, W. K. Puchs, and W.-
M. W. Hwu, "Compiler-Assisted Multiple In-

struction Retry," Tech. Rep. CRHC-91-31, Coor-
dinate! Science Laboratory, University of IUinois,

May 1991.

[19] J. A. Bondy and U. Murty, Graph Theory with
Applications. London, England: Macmillan Press

Ltd., 1979.

[20] J. L. Hennessy and D. A. Patterson, Computer
Architecture: A Quantitatiee Approach. San Ma-

t_'o, CA: Morgan Kaufmann Publishers, Inc.,
1990.

[21] J. K. Lee and A. J. Smith, "Branch Prediction

Strategies and Branch Target Buffer Design,"
Computer, vol. 17, no. 1, pp. 6-22, Jan. 1984.

